Image Recognition by Affine Tchebichef Moment Invariants

نویسندگان

  • Qian Liu
  • Hongqing Zhu
  • Qian Li
چکیده

Tchebichef moments are successfully used in the field of image analysis because of their polynomial properties of discrete and orthogonal. In this paper, two new affine invariant sets are introduced for object recognition using discrete orthogonal Tchebichef moments. The current study constructs affine Tchebichef invariants by normalization method. Firstly, image is normalized to a standard form using Tchebichef moments as normalization constraints. Then, the affine invariants can be obtained at the standard form. The experimental results are presented to illustrate the performance of the invariants for affine deformed images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image representation using separable two-dimensional continuous and discrete orthogonal moments

This paper addresses bivariate orthogonal polynomials, which are a tensor product of two different orthogonal polynomials in one variable. These bivariate orthogonal polynomials are used to define several new types of continuous and discrete orthogonal moments. Some elementary properties of the proposed continuous Chebyshev–Gegenbauer moments (CGM), Gegenbauer–Legendre moments (GLM), and Chebys...

متن کامل

Quaternion Discrete Tchebichef Moments and Their Applications

The concept of the quaternion is useful for colour image processing and recognition. This paper introduces quaternion discrete Tchebichef moments (QTM), which use the traditional Tchebichef moments (TM) of each colour channel to describe colour images. A set of invariants that are invariant to translation and scale transformations is introduced for colour object recognition and image classifica...

متن کامل

A New Class of Rotational Invariants Using Discrete Orthogonal Moments

This paper presents a new class of Tchebichef moments in polar coordinate form, using which rotational invariants can be easily constructed. The structure of the invariants is very similar to that of Zernike and Pseudo-Zernike moments, and their computation does not involve discrete approximation of continuous integral terms. The invariants are thus very robust in the presence of image noise, a...

متن کامل

A Comparative Analysis of Radial-Tchebichef Moments and Zernike Moments

moment descriptors are commonly used in applications such as image classification, pattern recognition and identification. A radial-polar representation of image coordinate space is particularly useful in the above applications, since it facilitates the derivation of rotation invariants of any arbitrary order. Zernike moments and radial-Tchebichef moments fall into the category of moments that ...

متن کامل

Generalized affine moment invariants for object recognition

This paper introduces a new way of extracting affine invariant features from image functions. The presented approach is based on combining affine moment invariants (AMI) with multiscale invariants, in particular multiscale autoconvolution (MSA) and spatial multiscale affine invariants (SMA). Our approach includes all of these invariants as special cases, but also makes it possible to construct ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011